Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cell Mol Life Sci ; 79(2): 94, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1653404

ABSTRACT

Numerous post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.


Subject(s)
Autoimmune Diseases/pathology , Citrullination/physiology , Inflammation/pathology , Protein Processing, Post-Translational/physiology , Protein-Arginine Deiminases/metabolism , COVID-19/pathology , Citrulline/biosynthesis , Energy Metabolism/physiology , Extracellular Traps/immunology , Gene Expression Regulation/genetics , Humans , Neoplasms/pathology , SARS-CoV-2/immunology , Thromboembolism/pathology
2.
Sci Rep ; 11(1): 8712, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1253973

ABSTRACT

Obesity is associated with both chronic and acute respiratory illnesses, such as asthma, chronic obstructive pulmonary disease (COPD) or increased susceptibility to infectious diseases. Anatomical but also systemic and local metabolic alterations are proposed contributors to the pathophysiology of lung diseases in the context of obesity. To bring perspective to this discussion, we used NMR to compare the obesity-associated metabolomic profiles of the lung with those of the liver, heart, skeletal muscles, kidneys, brain and serum from male C57Bl/6J mice fed with a high-fat and high-sucrose (HFHSD) diet vs. standard (SD) chow for 14 weeks. Our results showed that the lung was the second most affected organ after the liver, and that the two organs shared reduced one-carbon (1C) metabolism and increased lipid accumulation. Altered 1C metabolism was found in all organs and in the serum, but serine levels were increased only in the lung of HFHSD compared to SD. Lastly, tricarboxylic acid (TCA)-derived metabolites were specifically and oppositely regulated in the serum and kidneys but not in other organs. Collectively, our data highlighted that HFHSD induced specific metabolic changes in all organs, the lung being the second most affected organ, the main alterations affecting metabolite concentrations of the 1C pathway and, to a minor extend, TCA. The absolute metabolite quantification performed in this study reveals some metabolic specificities affecting both the liver and the lung, that may reveal common metabolic determinants to the ongoing pathological process.


Subject(s)
Diet, High-Fat , Dietary Sucrose/administration & dosage , Lipid Metabolism , Liver/metabolism , Lung/metabolism , Obesity/metabolism , Animals , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL